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1. Abstract 

This project’s aim is to understand and develop a basic home-banking login service: additional security is obviously 
required in those kind of applications, therefore the user will be asked to send a One Time Password during the 
login phase. 
The OTP is generated by a smart card given by his/her bank at registration time: 

 

A typical OTP dongle 

This extra security measurement shouldn’t of course affect the perceived usability of the service, so we will 
introduce our protocol proposal that will be using OTP windows to overcome some de-synchronization problems. 

2. Basic infrastructure 

2.1 Pre-existing physical architecture 
We start by presenting a reasonable pre-existing physical architecture sketch for a Bank organization: 

 

Basic physical architecture 

 

Users will be performing their login requests to their closest local application server available in their region: we 
suppose this kind of servers do not contain any critical information about their users, because they are located in a 
de-militarized zone (DMZ). 

On the other hand, a database server (that could be centralized or distributed) is firewalled properly in order to 
allow communications only from desired sources: this is also guaranteed by the use of SSL, that exploits both local 
servers’ and database server’s certificates. 

Attackers will then more likely choose local servers as their target: if one of them gets compromised, an attacker 
would not find any critical information stored in it. 

Upon receiving some credentials by some user who is attempting to login, the attacker would then be able to get 
those by decrypting them correctly with SSL; the attacker could also receive from the database server the user’s 
dongle counter and key if the previous credentials were correct. To sum up, a compromised local server only 
affects users who are attempting to login through it. 
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We will be referring to the local application server as the localServer (following the software denotation) and to 
the database server as the remoteServer. 

2.2 remoteServer’s database schema 
For each user, the remoteServer stores the following informations in its database: 

● username 
● password 
● dongle_key 
● dongle_counter 
● large_window_on 
● large_window_otp 

Almost all of the information above is encrypted by means of AES-128 in ECB mode with PKCS5 padding before it 
gets stored. 

Only the database server must be able to encrypt and decrypt data in its database, so symmetric encryption 
represents the best choice since it allows faster encrypting and decrypting than asymmetric encryption. 

The 128-bit key though is now a system’s single point of failure: once it gets compromised data is no longer secret. 

The ECB encryption mode avoids us to store different Initialization Vectors for each user, but it doesn’t hide data 
pattern: for this reason, the binary large_window_on variable is stored in clear. 

This is acceptable since it does not represent critical information, as the large_window_on variable is supposed to 
be deactivated most of time for all users (see Paragraph 3.2: OTP checking flowchart), and when it gets activated it 
stays on for a very short period of time due to the fact that after a second login attempt, whatever it is successful 
or not, the large_window_on variable gets reset to zero. 

Even if an attacker succeeds to know it and this parameter is set to one at a given time, his/her chances to broke 
the system are very low. 

An attacker that somehow succeeds to send an OTP belonging to the large_window must then find a new OTP 
code (also belonging to the large_window) to get authenticated. 

This is very unlikely because the adversary has a probability of 30/106 (where 30 are the number of OTP values 
valid for the second attempt, and 106 is the total number of OTP codes) to authenticate him/herself once he/she 
knows that the user’s large_window is on. 

This mechanism is better explained in the Application logic paragraph. 

3. Application logic 

3.1 Sequence diagram 
Now that we have defined a system’s basic infrastructure, we can now proceed by showing a simple sequence 
diagram: 
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All communications between object instances are protected by SSL (local servers and the database server already 
have their own certificate). 

 

 

remoteServer’s self-signed certificate example used in this project 

 

Both remoteServer and localServer are multithreading, so they are obviously able to serve more users at the same 
time. 

3.2 OTP checking flowchart 
The user starts by sending his/her credentials, consisting in a username, password and a OTP: the latter is 
generated by the “OTP dongle”, a smart card given to the user by the Bank at registration time, as seen in the 
Abstract. 

This smart card has a secret key in it, called dongle_key, which is pre-shared with the Bank, moreover only the 
remoteServer knows it since it is stored encrypted in its database. 

Whenever a new client signs up a contract with the Bank, the latter will take care of sending the smart card to the 
new customer. 

This secret key it’s used to generate the HOTP (HMAC-Based One-Time Password) using an algorithm better 
described in the RFC-4226 published in 2005: this algorithm simply outputs an OTP given two values, the secret key 
mentioned above (dongle_key) and the dongle_counter. 

Every time the dongle button is pressed (in order to generate a new OTP), the counter stored in the smart card is 
incremented, so that it will generate a different OTP afterwards. 

When the UserInfos object (composed by username, password and the OTP) finally arrives to the remoteServer 
(M2) through the localServer (M1) the process that checks whatever the user had all the correct inputs starts. 

Of course, every attempt fail is reported to the client as a “Login error, please try again“ message: in this way 
attackers won’t get any further information about the cause that made the authentication fail. 

The first step is to make sure that the user is registered to the Bank, by checking the relative entry in the 
remoteServer’s database and whether his/her password is correct or not. 

Then, the remoteServer sends a message (M3) to the localServer containing all the informations needed to 
generate the HOTP code, so it will then be able to match it with the one sent by the user. 

The localServer implements this task using a mechanism that allows some sort of synchronization between the 
counter stored in the bank’s database and the smart card’s one. 

This is possible thanks to the usage of two different windows: 

● narrow_window (used in the normal case scenarios) 
● large_window (used when the smart card’s counter goes out the narrow_window) 

https://www.ietf.org/rfc/rfc4226.txt
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At first the localServer tries to search for a correct OTP inside the narrow_window. 

If it can’t find such OTP value inside this window, the localServer tries to search for it inside the large_window. 

If no valid OTP is found in both narrow_window and large_window, then the localServer transmits the message M4 
as 0, indicating that the authentication has failed. 

Meanwhile if a valid OTP is found in the large_window, it is possible that the smart card’s counter has gone out of 
the narrow_window. 

A simple scenario of this synchronization error could be a careless user who generates different OTPs without 
performing any login, incrementing the counter stored in the smart card. 

Now the localServer has to prove if it is just a coincidence or a case of an attacker’s sheer luck. 

In order to do that the localServer sends a command (M5) to the remoteServer imposing it to activate the 
large_window for the user, and to store in its database what OTP caused this event. 

After the last login has failed, the client should try to perform a new login operation: now, after checking his/her 
username and password, the localServer knows if the user’s large_window is activated, thanks to the the 
CounterResponse object in M3: the localServer will then search for a valid OTP inside the large_window. 

If no matching OTPs are found, the localServer sends a message M5 to the remoteServer, imposing it to deactivate 
the large_window. 

When instead a new matching OTP is found, (different from the one stored in the remoteServer’s database and still 
belonging to the large_window) it means that most likely a synchronization error has occurred. 

The localServer now proceeds to send the new counter’s correct value to the remoteServer (M5), that simply 
deactivates the large_window and updates the counter stored in its database associated to that specific user. 
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Our protocol proposal’s entire flowchart 
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4. Simple BAN logic analysis 

We are now going to analyze our protocol proposal by means of the BAN logic, an important tool for analyzing 
cryptographic protocols. 

4.1 Assumptions 
1. LS’ certificate: 

a. 𝐶𝐶| ≡ 𝐾𝐾𝐿𝐿𝐿𝐿
+

↦ 𝐿𝐿𝐿𝐿 
b. 𝑅𝑅𝐿𝐿| ≡ 𝐾𝐾𝐿𝐿𝐿𝐿

+

↦ 𝐿𝐿𝐿𝐿 
2. RS’ certificate: 

a. LS| ≡ 𝐾𝐾𝑅𝑅𝐿𝐿
+

↦ 𝑅𝑅𝐿𝐿 
3. SSL session key establishment between C and LS: 

a. 𝐶𝐶| ≡ 𝐶𝐶
𝐾𝐾𝐶𝐶,𝐿𝐿𝐿𝐿�⎯�𝐿𝐿𝐿𝐿 

b. 𝐿𝐿𝐿𝐿| ≡ 𝐶𝐶
𝐾𝐾𝐶𝐶,𝐿𝐿𝐿𝐿�⎯�𝐿𝐿𝐿𝐿 

c. 𝐶𝐶| ≡ 𝐿𝐿𝐿𝐿| ≡ 𝐶𝐶
𝐾𝐾𝐶𝐶,𝐿𝐿𝐿𝐿�⎯�𝐿𝐿𝐿𝐿 

d. 𝐿𝐿𝐿𝐿|≡ 𝐶𝐶| ≡ 𝐶𝐶
𝐾𝐾𝐶𝐶,𝐿𝐿𝐿𝐿�⎯�𝐿𝐿𝐿𝐿 

4. SSL session key establishment between LS and RS: 

a. 𝑅𝑅𝐿𝐿| ≡ 𝐿𝐿𝐿𝐿
𝐾𝐾𝐿𝐿𝐿𝐿,𝑅𝑅𝐿𝐿�⎯⎯�𝑅𝑅𝐿𝐿 

b. 𝐿𝐿𝐿𝐿| ≡ 𝐿𝐿𝐿𝐿
𝐾𝐾𝐿𝐿𝐿𝐿,𝑅𝑅𝐿𝐿�⎯⎯�𝑅𝑅𝐿𝐿 

c. 𝐿𝐿𝐿𝐿| ≡ 𝑅𝑅𝐿𝐿| ≡ 𝐿𝐿𝐿𝐿
𝐾𝐾𝐿𝐿𝐿𝐿,𝑅𝑅𝐿𝐿�⎯⎯�𝑅𝑅𝐿𝐿 

d. 𝑅𝑅𝐿𝐿|≡ 𝐿𝐿𝐿𝐿| ≡ 𝐿𝐿𝐿𝐿
𝐾𝐾𝐿𝐿𝐿𝐿,𝑅𝑅𝐿𝐿�⎯⎯�𝑅𝑅𝐿𝐿 

5. dongle_key establishment at registration time 

a. 𝐶𝐶| ≡ 𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘
�⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿 

b. 𝑅𝑅𝐿𝐿| ≡ 𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘
�⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿 

6. The remoteServer RS is an authority on generating shared keys: 

a. 𝑅𝑅𝐿𝐿 ⟹ 𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘 
�⎯⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿 

b. 𝐿𝐿𝐿𝐿| ≡ 𝑅𝑅𝐿𝐿 ⟹ 𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘
�⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿 

Every localServer LS believes the previous statement because they belong the to same Bank 
organization.  
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4.2 Real protocol 
In message M1, the client C sends the OTP to the localServer. 
The OTP is actually a HOTP, an HMAC-based One-Time-Password: this is basically an hash function digest on the 
user’s dongle_counter concatenated with its dongle_key. Also other operations are performed on the digest, but 
they are irrelevant to this purpose. 

In order to follow the BAN logic notation, we can represent the HOTP (a keyed-hash) as the dongle_counter 
encrypted by means of the dongle_key, that is {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐}𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘. 

𝑀𝑀1) 𝐶𝐶 → 𝐿𝐿𝐿𝐿:    �𝑐𝑐𝑢𝑢𝑑𝑑𝑐𝑐𝑑𝑑𝑢𝑢𝑢𝑢𝑑𝑑,𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑝𝑝𝑑𝑑𝑐𝑐𝑑𝑑, {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐}𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘�𝐾𝐾𝐶𝐶,𝐿𝐿𝐿𝐿
 

𝑀𝑀2) 𝐿𝐿𝐿𝐿 → 𝑅𝑅𝐿𝐿: �𝑐𝑐𝑢𝑢𝑑𝑑𝑐𝑐𝑑𝑑𝑢𝑢𝑢𝑢𝑑𝑑,𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑝𝑝𝑑𝑑𝑐𝑐𝑑𝑑, {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐}𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘�𝐾𝐾𝐿𝐿𝐿𝐿,𝑅𝑅𝐿𝐿
 

𝑀𝑀3) 𝑅𝑅𝐿𝐿 → 𝐿𝐿𝐿𝐿:  {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘, 𝑑𝑑𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑_𝑝𝑝𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝_𝑑𝑑𝑑𝑑, 𝑑𝑑𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑_𝑝𝑝𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝_𝑑𝑑𝑐𝑐𝑝𝑝}𝐾𝐾𝐿𝐿𝐿𝐿,𝑅𝑅𝐿𝐿  

𝑀𝑀4) 𝐿𝐿𝐿𝐿 → 𝐶𝐶:    {0 𝑑𝑑𝑐𝑐 1}𝐾𝐾𝐶𝐶,𝐿𝐿𝐿𝐿  

𝑀𝑀5) 𝐿𝐿𝐿𝐿 → 𝑅𝑅𝐿𝐿:  {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘, 𝑑𝑑𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑_𝑝𝑝𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝_𝑑𝑑𝑑𝑑, 𝑑𝑑𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑_𝑝𝑝𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝_𝑑𝑑𝑐𝑐𝑝𝑝}𝐾𝐾𝐿𝐿𝐿𝐿,𝑅𝑅𝐿𝐿  

4.3 Idealized protocol 
Only M3 changes as follows: 

𝑀𝑀3) 𝑅𝑅𝐿𝐿 → 𝐿𝐿𝐿𝐿: 

�𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿,𝐶𝐶

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘
�⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿, 𝑑𝑑𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑_𝑝𝑝𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝_𝑑𝑑𝑑𝑑, 𝑑𝑑𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑_𝑝𝑝𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝_𝑑𝑑𝑐𝑐𝑝𝑝�

𝐾𝐾𝐿𝐿𝐿𝐿,𝑅𝑅𝐿𝐿
 

4.4 Analysis 
Every message can be correctly de-crypted from each receiver, thanks to assumptions 3a, 3b, 4a and 4b. 
Freshness is guaranteed by the SSL handshake protocol: in fact, nonces contained in client_hello and server_hello 
messages allow both parties to generate a fresh master secret in order to avoid replay attacks. 

Let us see an example in BAN logic terms for LS upon receiving message M1. 
Let: 

𝑀𝑀1 = �𝑐𝑐𝑢𝑢𝑑𝑑𝑐𝑐𝑑𝑑𝑢𝑢𝑢𝑢𝑑𝑑,𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑝𝑝𝑑𝑑𝑐𝑐𝑑𝑑, {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐}𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘� 

Using assumption 3b and the message meaning rule (1st postulate): 

𝐿𝐿𝐿𝐿| ≡ 𝐶𝐶
𝐾𝐾𝐶𝐶,𝐿𝐿𝐿𝐿�⎯�𝐿𝐿𝐿𝐿, 𝐿𝐿𝐿𝐿 ⊲ {𝑀𝑀1}𝐾𝐾𝐶𝐶,𝐿𝐿𝐿𝐿  
𝐿𝐿𝐿𝐿|≡ 𝐶𝐶|~𝑀𝑀1

 

Also, freshness is guaranteed by the SSL handshake protocol, so thanks to the nonce verification rule (2nd 
postulate): 

𝐿𝐿𝐿𝐿| ≡ #(𝑀𝑀1),𝐿𝐿𝐿𝐿|≡ 𝐶𝐶|~𝑀𝑀1 
𝐿𝐿𝐿𝐿|≡ 𝐶𝐶| ≡ 𝑀𝑀1

 

This of course applies to each message exchanged in our protocol proposal. 
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Following the same reasoning, we could also state that LS, upon receiving message M3: 

𝐿𝐿𝐿𝐿|≡ 𝑅𝑅𝐿𝐿| ≡ �𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿,𝐶𝐶

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘
�⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿, 𝑑𝑑𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑_𝑝𝑝𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝_𝑑𝑑𝑑𝑑, 𝑑𝑑𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑_𝑝𝑝𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝_𝑑𝑑𝑐𝑐𝑝𝑝� 

This of course implies: 

𝐿𝐿𝐿𝐿|≡ 𝑅𝑅𝐿𝐿| ≡ �𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿,𝐶𝐶

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘
�⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿, 𝑑𝑑𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑_𝑝𝑝𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝_𝑑𝑑𝑑𝑑, 𝑑𝑑𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑_𝑝𝑝𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝_𝑑𝑑𝑐𝑐𝑝𝑝�

𝐿𝐿𝐿𝐿|≡ 𝑅𝑅𝐿𝐿| ≡ 𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘
�⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿

 

By applying the jurisdiction rule (3rd postulate) with assumption 6b, we obtain: 

𝐿𝐿𝐿𝐿|≡ 𝑅𝑅𝐿𝐿| ≡ 𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘
�⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿, 𝐿𝐿𝐿𝐿| ≡ 𝑅𝑅𝐿𝐿 ⟹ 𝐶𝐶

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘
�⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿

𝐿𝐿𝐿𝐿| ≡ 𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘
�⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿

 

After M1, this result can be applied to the message meaning rule (1st postulate): 

𝐿𝐿𝐿𝐿| ≡ 𝐶𝐶
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘
�⎯⎯⎯⎯⎯⎯�𝑅𝑅𝐿𝐿, 𝐿𝐿𝐿𝐿 ⊲ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐}𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘 
𝐿𝐿𝐿𝐿|≡ 𝐶𝐶|~ (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐)

 

Where 𝐿𝐿𝐿𝐿 ⊲ {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐}𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘 is due to the fact that the localServer has received the HOTP code 
{𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐}𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑘𝑘𝑑𝑑𝑘𝑘   in the first message, encrypted with the symmetric session key 𝐾𝐾𝐶𝐶,𝐿𝐿𝐿𝐿 established by 
SSL between the client and the localServer. 

The localServer now does not have to believe that the dongle_counter quantity is fresh: it could have been sent 
previously, even by a legitimate user (e.g.: by distraction). 

It is enough for the localServer to believe that the client C “once said” (sent) its dongle_counter value to proceed 
with the OTP check. The localServer will then be in charge of determing whether it is a valid OTP code or not. 

Replay attack involving M1 are avoided thanks to the freshness assumption guaranteed by the SSL handshake 
protocol as we said before. 

  



10 
 

5. Conclusions 

The applications we developed (one for each entity) is available at: 

• https://github.com/marcomicera/OTPclient 
• https://github.com/marcomicera/OTPlocalServer 
• https://github.com/marcomicera/OTPremoteServer 

The remoteServer application just outputs some useful informations on its terminal: 

 

As the localServer does: 

 

https://github.com/marcomicera/OTPclient
https://github.com/marcomicera/OTPlocalServer
https://github.com/marcomicera/OTPremoteServer
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A typical remoteServer’s encrypted database instance could be the following: 

 

The client application has got a minimal UI to let the user insert his/her credentials. 
It also has a simulated OTP dongle interface in it: 
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